
JPL Publication 91-32

Upper Bound SEU Rate for Devices
in an Isotropic or Nonisotropic Flux

Larry D. Edmonds

uncl :
tj

August 1, 1991

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California





JPL Publication 91-32

Upper Bound SEU Rate for Devices
in an Isotropic or Nonisotropic Flux

Larry D. Edmonds

August1,1991

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California



The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration (NASA). It was sponsored by the NASA
Microelectronics Radiation Effects Ground Test Program.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.



ABSTRACT

A method for constructing upper bound estimates for device

single event upset (SEU) rates is proposed. A directional Hein-

rich flux, as a function of direction, must be known. A computer

code, included in this publication, converts the directional

Heinrich flux into an "effective flux". The effective flux pro-

vides a simple way to estimate upper bound SEU rates for devices

with a known normal incident cross section versus LET curve.
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i. INTRODUCTION

Particle sources that can cause single event upset (SEU) in

integrated circuits include solar events, the anomalous component

(which is important in some low Earth orbits), and trapped heavy

ions around a planet (e.g., Jupiter). For many space projects,

one or another of these components will dominate the mission

integrated fluence (which determines the probability of an SEU

during the mission) and/or peak flux (which impacts the effec-

tiveness of some error detection and correction schemes). Thus,

for many space projects, one or another of the above components

is the most important SEU related environment. All of these

components are relatively soft in the sense that mass shielding

can cause significant attenuation. Galactic cosmic rays are hard

(only slightly attenuated by mass shielding) but are frequently

not the environment that causes a space project the most trouble.

The most trouble often comes from the softer components. Because

these components are affected by mass shielding, and such shield-

ing is rarely symmetrically distributed in a spacecraft, the flux

inside a spacecraft is not isotropic. Therefore, there is a need

for the ability to estimate SEU rates in a nonisotropic flux. A

particular calculational method is presented here. The calcula-

tional method applies to SEU caused by direct ionization. Proton

induced SEU involving nuclear reaction products requires a sepa-

rate calculation which is not discussed here.

The SEU rate for a device can be expressed as

rate = (L,8,#) a(L,e,_) d_ d(cose) dL

j-xj0
(i)

where h(L,e,#) is the differential (in LET) directional flux

evaluated at LET L and at the spherical coordinate angles 8 and

(the Z axis is normal to the device), o is a LET dependent direc-

tional cross section.
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The best determination of a typically comes from heavy ion

tests using particle accelerators. (There are special conditions,

discussed in section 4, where a can be deduced from a simple

physical model. The present discussion applies to the more common

situation where a is known only from heavy ion tests.) If a was

known in sufficient detail (it is assumed that the flux, h, is

known), the rate could be evaluated by numerically evaluating the

integral in (i). Unfortunately, a is usually only partially

determined from experimental data because data at large e is not

meaningful (i.e., does not apply to particles found in space)

unless the test ions have a lot of range. Machines capable of

producing such long range ions (e.g., the Bevalac) are expensive

to use and, therefore, most SEU tests do not use such machines.

JPL normally tests with lower energy machines and restricts e to

be between 0 and 60 °. With 8 so restricted, the "cosine law",

which states that

= Icosel a(L/Icosel,o,o) , (2)

is usually observed. The large 8 (large enough to violate (2))

behavior is usually not measured.

Because the large e behavior of a is usually unknown, it is

necessary to make worst-case assumptions, i.e., we look for an

upper bound for the SEU rate. This will be done by assuming a

particular physical model and adjusting unknown parameters to

obtain a maximum predicted rate I (details are discussed later).

l. Some devices exhibit a significant deviation from the cosine

law for angles as small as 60 ° or less. For such devices, the

existing data qualifies as large angle data (the tested angles

are large enough to violate (2)) and it is possible to justify

SEU rate estimates that are less pessimistic than the upper bound

estimates considered here. Instead of adjusting model parameters

for a maximum predicted rate, they are adjusted for a best fit to
the measured data.
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There are circumstances where upper bound estimates can over-

estimate the actual SEU rate by orders of magnitude. This can

occur when h is of such a form that the SEU rate can be dominated

by particles that hit the device at grazing angles (8=90°). In

this case, the most important angles are the large angles (beyond

the range such that (2) applies), and typical experimental data

is inadequate because the test is performed at the least impor-

tant angles. There are no data pertaining to the most important

angles, and the data leave SEU rates undetermined by orders of

magnitude. An estimate that is an upper bound (i.e., large enough

to compensate for the inadequacy of the data) could be orders of

magnitude larger than the actual rate.

Upper bound estimates are occasionally (not always) much higher

than the actual SEU rate, but such estimates can still be useful

to a space project. It often happens that a device is hard and/or

the environment is mild, so that even an excessively pessimistic

prediction does not bother the project. If this is the case, an

upper bound estimate is good enough. If not, the project might

have to obtain and utilize large incident angle cross section

data so a less pessimistic estimate can be obtained. This was

done in the past by JPL, but the expense was considerable.

Because upper bound estimates are useful and more economical

than accurate methods, they are the final objective of this

publication. However, as a means to an end, the SEU rate will

also be expressed as a function of the parameters of a particular

physical model. This allows the rate to be estimated when the

parameters happen to be known. Most of the analysis to follow is

concerned with expressing the rate in terms of model parameters.

Adjusting the parameters to maximize the rate is discussed in

Sections 7 and 8. The "maximized rate" can be used to construct

an "effective flux" which greatly simplifies SEU rate calcula-

tions (see Sections 7 and 8).
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2. THE PHYSICAL MODEL

We will use the credible (but nonrigorous) assumption that

there will be enough pessimism in our treatment of the 8 depend-

ence of a to more than compensate for any possible _ dependence.

In other words, we assume that an upper bound estimate, derived

for devices with azimuthal symmetry, will over-estimate an actual

SEU rate even if the actual device does not have azimuthal symme-

try. Thus, we confine our attention to devices with azimuthal

symmetry and _(L,8) will replace a(L,8,_).

Another assumption is that the device consists of a number of

charge-collecting volumes and an SEU occurs when one of these

volumes collects an amount of charge that exceeds some critical

value. It is also assumed that the charge collected by a volume

is proportional to ion path length (in the volume) times ion LET

(this is a traditional assumption [i]). For the reasons given in

the previous paragraph, we will confine our attention to circu-

lar-cylindrical charge-collecting volumes.

3. DISCUSSION OF SINGLE CHARGE-COLLECTING VOLUME

Devices containing a collection of charge-collecting volumes

will eventually be considered, but the analysis will begin with a

device (hypothetical or real) containing a single charge-col-

lecting volume of uniform thickness. The normal incident cross

section versus LET curve for such a device is a step function of

height A and with a threshold LET Lth. The charge-collecting

volume is assumed to be a circular cylinder of normal incident

area A and a threshold LET Lth is associated with it. The only

parameter that cannot be determined from the normal incident

cross section data is the charge-collecting volume thickness T.

An upper bound SEU rate estimate is obtained by maximizing the

predicted rate in T with A and Lth held fixed.



It is interesting that the "cosine law" becomes exact (i.e.,

(2) becomes exact for all 8) in the limit as T_0 and many people

erroneously think that this limit gives the maximum SEU rate. So-

called "proofs" of this assertion are flawed because they fail to

include particle trajectories that enter the volume through a

side instead of the upper surface. In reality, a plot of rate
versus T will show a maximum at some nonzero T. An extreme case

that illustrates this occurs when Lth is so small compared to the
LET of all particles in the environment that virtually every

particle that hits the volume will cause an upset. In this case,
the SEU rate will increase as T increases because more particles

hit the volume when T is larger. Thus the upper bound SEU rate is

not obtained from the limiting case as T_0I.

Determination of the maximum (in T) rate requires that we be

able to estimate the rate for arbitrary T. This is a nontrivial

calculation and a simplifying approximation is helpful. For a

given trajectory direction, we can place an imaginary box-shaped

volume around the charge-collecting volume which is oriented

relative to the trajectory direction as shown in Figure i. Any

trajectory that hits the charge-collecting volume will also hit

the imaginary box, and have a path length in the box that is at

least as large as that in the original volume. The path length

required for an SEU is the same for the two volumes (both volumes

are assigned the same normal incident threshold LET and have the
same thickness) so any particle that causes SEU in the original

volume will also do so in the imaginary box. Therefore, an upper

bound for a(L,8) can be estimated by replacing the original

volume with the imaginary box. The box is conveniently oriented

so that the mathematical analysis (see Section 5) is essentially
two dimensional. Note that the box has a different orientation

for different values of the trajectory coordinate _. For this

l. The limiting (T_0) rate often is very nearly equal to the
maximum (in T) rate. But this condition, when it holds, is a
property of h and Lth and does not apply to all possible h and
Lth (as the above counter-example has shown).
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Figure i. Two views of the charge-collecting volume (solid

curves) and an imaginary box-shaped volume (dotted curves). (A)

is a view from a side with the Z axis and particle trajectory in

the plane of the paper. (B) is a view from above.



reason, the box will be called the "rotating box".

4. UTILIZATION OF DEVICE FEATURE GEOMETRY

Until now, it was assumed that the only available device data

is that obtained from heavy ion tests. Occasionally, the geometry

of various structures (e.g., depletion regions) is known. It is

tempting to utilize such information, when it is available, and

this section discusses when and how such information should be

utilized. Throughout this discussion, it is assumed that the

charge-collecting volume is a depletion region (DR).

If the DR thickness happens to be known, it is tempting to set

T equal to this thickness (some people also add a "funnel length"

but this is a mistake and is discussed again later). If this is

valid, it is better than selecting T for a maximum rate because

it will produce an accurate rate estimate instead of an upper

bound estimate. However, it is often not valid to set T equal to

the DR thickness, because the physical model (which assumes

collected charge to be proportional to LET times path length in a

geometrically well-defined volume) is totally wrong when diffu-

sion plays a role.

It is nontrivial to determine when diffusion plays a role (even

if device time constants are known) because diffusion is both

fast and slow. If an ion track is close to a DR, there is ini-

tially a very large carrier gradient between the high density

track and the sink-like DR boundary. This large gradient produces

a very strong diffusion current (fast charge collection) which is

comparable to the drift current during the recovery stage of

funneling (virtually all charge collection occurs during the

recovery stage of funneling [2]). As the track dissipates, charge

collection via diffusion slows down, but a significant charge can

be collected quickly. Simulations, using a cylindrical coordinate

version of PISCES, have shown that an ion track can obliterate a



DR that is 5_m away in 0.3ns. Closer tracks can do the same in a

shorter time.

Although the physical model is wrong when diffusion plays a

role, an approximate cosine law (for a limited angle range) is

compatible with diffusion and the physical model can be used in

a curve fitting sense. When applied to diffusion, the charge-

collecting volume dimensions that produce the correct SEU rate

prediction are not the dimensions of any actual physical struc-

tures. Therefore, dimensions should be determined from heavy-ion

cross section data, if large angle data are available, and not

from device feature geometry. If large angle data are not avail-

able, the appropriate dimensions are unknown; hence the need for

upper bound estimates.

If it is somehow known that diffusion can be neglected for a

particular device, it should be acceptable to set T equal to the

DR thickness. Many people erroneously think that a "funnel

length" should be added to the DR thickness. A recent funneling

analysis [2] concludes that, in the absence of diffusion, total

collected charge from an ion track can be calculated from the

physical model (which states that collected charge is proportion-

al to path length times LET) by extending each DR linear dimen-

sion (including the lateral dimensions) by a certain percentage.

The DR can be replaced with an ,,extended DR" for the purpose of

calculating collected charge. This reinforces the concept of

adding a "funnel length" to the dimensions, but the concept cor-

rectly calculates only charge collected from a given track inter-

secting the DR. The concept of an extended DR does not correctly

calculate the cross section. Trajectories intersecting only the

extended portions do not result in a collected charge (in the

absence of diffusion). The funnel length extension of the DR does

not contribute to the cross section. Hence an extended DR cannot

play the role of the charge-collecting volume if our simple

physical model is to be used.
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It was concluded above that an extended DR should not be used

to determine the charge-collecting volume dimensions. However,
the actual DR (no funnel lengths added) can be used in the ab-

sence of diffusion. The reason is that the total collected charge

is proportional to the charge liberated in the DR [2]. If total

collected charge has a threshold or critical value which results

in SEU, then so does the charge liberated in the actual DR. The

latter charge can be calculated by applying the simple physical

model to the actual DR (no funnel lengths are added).

In summary, if the importance of diffusion is unknown, it is

best not to utilize geometric data because we could be putting

the "right information into the wrong model". A charge-collecting
volume is a mathematical construct whose dimensions should be

determined from large angle heavy ion cross section data. In the

absence of such data, the appropriate dimensions are unknown;

hence the need for upper bound estimates. If it is known that

diffusion can be neglected, the appropriate dimensions for the

charge-collecting volume are the actual DR dimensions (funnel

lengths are not added). Note that the threshold value of charge

liberated in the DR, rather than the threshold value of collected

charge, is used to determine the threshold LET (but this is

irrelevant if threshold LET is known from heavy ion tests).

5. MATHEMATICAL ANALYSIS FOR SINGLE CHARGE-COLLECTING VOLUME 1

The objective is to calculate the SEU rate, as a function of A

(the normal incident area of the original volume), T, and Lth . R

is the radius of the original volume and is related to A by

R=(A/_) I/2. An upper bound estimate will be obtained by replacing

the original volume with the rotating box (of width 2R) discussed

l. Readers that are not interested in the mathematical details can

skip this section.
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in Section 3. Throughout this section, the cross section a(L,e)

refers to the rotating box rather than the original volume.

We begin the analysis by assuming that 8 satisfies 0<8<90 ° ,

which represents particles moving in a downward direction, a is

expressed as the sum of four partial cross sections

a(L,8) = al(L,8) + a2(L,e) + a3(L,e) + a4(L,e)

where a i is the cross section associated with the i th group of

particle trajectories and the groups are defined by (for

eE (o,rr/2)) :

group 1 = Trajectories that enter the box through the upper

surface and exit through the lower surface.

group 2 = Trajectories that enter the box through the upper

surface and exit through a side.

group 3 = Trajectories that enter the box through a side and

exit through the lower surface.

group 4 = Trajectories that enter the box through a side and

exit through a side.

The analysis is slightly different depending on whether

eE(0,arctan(2R/T)) or 8_(arctan(2R/T),_/2) and the two cases are

considered separately. Group 1 trajectories are illustrated for

the first case in Figure 2. These trajectories all have the same

path length, 1 (see Figure 2), and SEU will occur if 1 and parti-

cle LET, L, are related by

1 L > Lth T

or

i0



\

Figure 2 . Illustration of group 1 trajectories when

0<e<arctan (2R/T) .



L Z Lth cos8 . (3)

These trajectories can enter the box through any point in the

upper surface (of area 4R 2) except the section of width i' (and

area 2RI') shown in the figure. Hence, the trajectories can enter

through any point of a surface of area

4R 2 - 2R i' = 2R (2R - T tanS).

The cross section (when (3) is satisfied) is the projection of

this area in the direction of the trajectory. This gives:

a I (L,8) = I

If 0 S 8 S arctan(2R/T) then

2R (2R - T tanS) cos8 if cos8

0 otherwise.

< L/Lth

If arctan(2R/T)<8<_/2, there are no group 1 trajectories and we

get:

If arctan(2R/T) < 8 < _/2 then

al(L,8 ) = 0.

Figure 3 illustrates group 2 trajectories for the case

0<8<arctan(2R/T). SEUs are caused by trajectories below the one

with length, 1 (see Figure 3), satisfying

1 = Lth T/L (4)

and such trajectories intersect a surface section of height i'

(and area 2RI') shown in the figure, where

i' = T - 1 cos8 = T - (Lth T/L) cos8 .

The area of this surface section is

12



V

Figure 3. Illustration of group 2 trajectories when

0<e<arctan (2R/T) .
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2R T (i - Lth cose/L) .

The cross section is this area projected in the direction of the
trajectory (if i' is positive, otherwise the cross section is

zero) and we get:

a2(L,e ) =

If 0 < e < arctan(2R/T)

2R T (i - Lth cose/L) sine

0 otherwise .

then

if cose < L/L_

Figure 4 illustrates group 2 trajectories for the case

arctan(2R/T)<e<ff/2. SEUs are caused by the trajectories to the

left of the one with length 1 (see Figure 4) satisfying (4) and

such trajectories intersect a surface section of width i, (and
area 2RI') shown in the figure, where

i' = 2R - 1 sine = 2R - (Lth T/L) sine

The area of this surface section is

2R (2R - Lth T sine/L) .

The cross section is this area projected in the direction of the

trajectory (if i' is positive, otherwise the cross section is

zero) and we get:

a2 (L,e) =

If arctan(2R/T) < e < _/2 then

2R (2R - Lth T sing/L) cose if sine < 2RL/(T Lth )

0 otherwise .

Group 3 trajectories are similar to group 2 trajectories and

the result is:

14



!_ 2R

_/

Figure 4 . Illustration of group

arctan(2R/T) <e<_/2.

2 trajectories when
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_3(L,e) =

If 0 < e < arctan(2R/T)

2R T (i - Lth cose/L) sine

0 otherwise

then

if cose < L/L_L

a3(L,e ) =

If arctan(2R/T) < e < _/2 then

2R (2R - Lth T sine/L) cose if sine < 2RL/(T Lth )

0 otherwise .

The analysis for group 4 trajectories is similar to that for

group 1 trajectories and the result is:

If 0 < e < arctan(2R/T)

a 4 (5,8) = 0

then

a4(L,e ) =

If arctan(2R/T) < e < _/2 then

2R (T - 2R cote) sine if sin8 < 2RL/(T Lth )0 otherwise

We next consider e in the range ff/2<e<_. For this range (repre-

senting particles moving upwards), the groups are redefined by

interchanging upper and lower surfaces. It is evident that the

partial cross sections for this range can be obtained from the

previous expressions by replacing e with _-e.

The symbolism can be shortened by using the unit step function

6o (the subscript distinguishes it from a Dirac delta function)

defined by

6o(X) =

1 if x > 0

0 if x < 0 .

16



The cross section is obtained by adding the partial cross sec-

tions and the result is:

If 0 < 8 < arctan(2R/T) then

a(L,8) = f(L,cosS) 6o(L/Lth - cosS) . (5a)

If arctan(2R/T) < 8 < 7/2 then

a(L,8) = f(L,cosS) 6o(2R L/(T Lth) - sinS). (5b)

If _/2 < 8 < _ - arctan(2R/T) then

a(L,8) = f(L,cos(_-8)) 6o(2R L/(T Lth) - sin(_-8)). (5c)

If _ - arctan(2R/T) < 8 < _ then

a(L,8) = f(L,cos(_-8)) 6o(L/Lth - cos(_-8)) (5d)

where f is defined by

f (L, a) =4R 2_+2RT(I-_ 2) I/2_4RT (Lth/L) _ (I-_ 2) i/2 for _[0,i]. (6)

For future convenience, it is helpful to define S(L) by

S(L) = sqrt*(l - 4R 2 L2/(T 2 Lth2)) (7)

where the * indicates a modified square root function defined by

sqrt*(_) = (8)

It is not difficult to show that

6o(2R L/(T Lth) - sinO) = 6o(COSO - S(L))

6o(2R L/(T Lth)-sin(_-O)) = 6o(COS(W-O)-S(L))

for 0 E [0,7/2)

for _-0 _ [0,w/2)

17



so that (Sb) and (5c) can be written as

If arctan(2R/T) < 8 < _/2 then

c(L,8) = f(L,cosS) 6o(COSe - S(L)) . (9a)

If _/2 < 8 < _ - arctan(2R/T) then

a(L,e) = f(L,cos(_-e)) 6o(COS(_-8 ) - S(L)) (9b)

Having evaluated a, it is necessary to numerically evaluate the

integral in (i). The ¢ integral can be carried out separately so

that (i) can be written as

rate = 2_ I_ I_a(L,8)ha(L,8)sin8 de dL
(i0)

where

ha(L,8 ) = (2_) -I ,8,¢) de (11)

is the ¢ average of h.

The 8 integration in (i0) is carried out by partitioning the

interval [0,_) into the user specified subintervals

[ai,ai+l) i = i, ..., N .

N and al, ..., aN+ 1 are specified by the user but they must

satisfy 0=al<a2<...<aN+l=_. The _ average flux, ha, is treated as

a constant (in 8) over each interval and hai denotes the flux for

the i th interval, i.e.,

hai(L ) = ha(L,e ) for 8 ([ai,ai+l) . (12)

Another partitioning of [0,_) consists of the intervals

18



[bi,bi+l) i = i, 2, 3, 4

where

bl = 0 (13a)

b 2 = arctan(2R/T) (13b)

b 3 = 7/2 (13c)

b 4 = _ - arctan(2R/T) (13d)

b5 = _ (13e)

The interval [0,7) can be expressed as the double union

4 N

[0,_) = U U C.
i=l j=l z,j

(14)

where

Ci, j : [bi,bi+l) n [aj,aj+l)
(15)

A more compact expression for Ci, j can be obtained by defining

cli,j = max{aj,bi} i = i, ..., 4 j = i, ..., N (16a)

c2i,j : min{aj+l,bi+l} i = i, ..., 4 j : i, ..., N (16b)

so that Ci, j can be expressed as

[cli,j, c2i,j)Ci'j = empty if c2i,j

if c2i,j > cli,j

S cli,j •

(17)
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The Ci, j intervals do not overlap (as seen by (15)) so any inte-

gral from 0 to _ can be expressed as

-- ci,j
(18)

where the integral on Ci, j is defined by

I = [c2i,j
Ci,j Jcli,j

if Ci, j is not empty

ICi,j
= 0 if Ci, j is empty

and can be written more compactly as

I [c i,j
Ci,j = 6o(C2i, j - cli,j) Jcli,j

(19)

The e integral in (i0) can be evaluated using (12), (15), and

(18) with the result

N 4a(L,e) ha(L,e ) sine de = Z haj(L ) T.
j=l i=l I alL,e) sine de.

Ci j

(20)

To evaluate the integrals on the right side of (20), use (19) and

note that i=l uses (5a), i=2 uses (9a), i=3 uses (9b), and i=4

uses (Sd). The result is

[D 1 .a(L,e) sine de = 6o(C21 j-cl I j) _%f.3,z) 6o((L/Lth)-Z ) dz (21a)

JCI, j ' ' JD i, j

de = 6o(C22 j-cl 2 j) f.3,z) 6o(Z-S(L)) dz (21b)

' ' JD 2,j

2O



f 'a(L,e) sin8 de = 8o(C23 j-cl 3 j) _3,z) 6o(Z-S(L)) dz (21c)

JC3, j ' ' JD 3,j

a(L,e) sine d8 = 6o(C24 j-cl 4 j) t3,z) 6o((L/Lth)-Z ) dz (21d)

C4, j ' ' JD 4,j

where the D's are defined by

Dki,j = cos(cki,j)

Dki, j = cos(_-cki,j)

for k = 1,2

for k = 1,2

i = 1,2 j = I,...,N (22a)

i = 3,4 j = I,...,N . (22b)

To evaluate the integrals in (21), define F by

F(L,z) = 2R 2 z2 + R T z (l-z2) I/2 + R T arcsin(z)

+ (4/3)R T (Lth/L) (l-z2) 3/2 if z _ [0,i] (23a)

F(L,z) = 0 if z < 0 or z > 1 (23b)

so that F is an antiderivative (in z) of f. It is helpful to use

the following identities, which are valid when a,b_[0,1]:

I_f(L,z) dz =
6o(C-Z)

6o(C-a ) [F(L,c)-F(L,a)] + _o(C-b) [F(L,b)-F(L,c)] (24a)

I_f(L,z) dz =6o(Z-C)

6o(a-c ) [F(L,c)-F(L,a)] + _o(b-c) [F(L,b)-F(L,c)] . (24b)

Note that if c<0 or c>l, F(L,c) is not defined in (23a) and, in

order to avoid computer error, it is necessary to extend the

domain of F. But c<0 or c>l also implies that the F(L,c) terms

drop out of the above equations so F(L,c) can be defined in any

convenient way. This was the motivation for (23b), which extends
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the domain of F in a particular convenient way.

Applying (24) to (21) gives

I a(L,e) sine de =
Cl,j

6o (c2 j)l,j-cll,

+ 6o(C21,j-cll,j)

6o((L/Lth)-D21,j)

6o((L/Lth)-DII,j)

[F 3 (L) -F21, j (L) ]

[FII, j (L)-F 3 (L) ] (25a)

+

sine de =

6o(C 2 9)2,j-C12,

60(C22,j-CI2,j)

60(D22, j-S (L))

60(D12, j-S (L))

[F 4 (L)-F22, j (L) ]

[FI2, j (L)-F 4 (L) ] (25b)

I a(L,e)
C3,j

+

sin8 de =

6o(C23,j-c13,j)

6o(C23,j-c13, j)

60 (DI3, j-S (L))

6o (D23, j-S (L))

[F4(L)-FI3,j(L)]

[F 2 -F 43,j(L) (L)]
(25c)

I alL,e) sine de =
C4 j

6 o (c24, j-cl4, j)

+ 6o(C24,j-c14, j)

6o((L/Lth)-Dl4,j)

6o((L/Lth)-D24,j)

[F 3(L)-FI4,j(L) ]

[F24, j (L)-F 3 (L) ] (2Sd)

where the F arrays are defined by
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FIi,j(L) = F(L,DIi,j)

F2i,j(L) = F(L,D2i,j)

F3(L) = F(L,L/Lth )

F4(L) = F(L,S(L)) .

(26a)

(26b)

(26c)

(26d)

Define the array Gj(L) by

,[Gj(L) = Z a(L,8) sine

i=l JCi, j

d9 (27)

which can be expressed in terms of the F arrays via (25) and

(27). Combining (i0) with (20) and (27) gives

rate = 2_ Z (L) Gj(L) dL .
j=l

(28)

As an incidental point, we see from (28) that 2_Gj(L) is a

cross section, associated with the jth 8 interval, for upsets for

particles with LET equal to L. In an isotropic environment, the

total effective cross section is

N

2_ Z Gj (L) .
j=l

This "effective cross section" is the quantity that the direc-

tional flux (in an isotropic environment consisting of particles

all having the same LET L) must be multiplied by to produce the

SEU rate. The cross section that the omnidirectional flux (direc-

tional flux times 4_) must be multiplied by to produce the rate

is
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N
(1/2) Z Gj(L) .

j=l

To numerically integrate in LET, select LET values LI, ..., LM
for some user specified M where L1 is to be small enough so that

the integral from 0 to L1 is negligible (to avoid indeterminate

forms, it is required that LI>0 ) and LM is to be large enough so

that the integral from LM to the largest possible particle LET is
negligible. The rate is approximated by

rate = 2_
N M-I

j=l k=l
Lk+l h .
Lk a3 (L) Sj (L) dL

It is required that the L's be sufficiently closely spaced so

that Gj is nearly a constant in each integral. This produces the
approximation

Lk+l h .
Lk a3(L) Gj(L) dL =

[Lk+lh (L) dL =
(1/2) [Gj(Lk+l) + Gj(Lk) ] jL k aj

(1/2) [Gj(Lk+I) + Gj(Lk) ] [Haj(Lk) - Haj(Lk+l) ]

where Haj is the integral (in LET) flux. The rate becomes

N M-I
rate = _ Z Z + Sj, k] (29)j=l k=l [Sj,k+l [Haj, k - Haj, k+l]

where

Gj,k = Gj(Lk) (30)

and Haj,k is a user supplied integral (in LET) directional flux

evaluated at L k and in the direction corresponding to the jth e

interval and averaged in #.
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The equations needed for the actual computations are summarized

below. The user supplies the L's. The b's are calculated from

(13) and the a's are supplied by the user and are used to calcu-

late the c's and D's via (16) and (22). The rate is calculated

from (29) with Haj,k supplied by the user. Gj, k is obtained by
combining (30), (27), and (25) with the result

Gj, k =
_o(C21,j - cll,j) 6o((Lk/Lth) -

+ _o(C21,j - cll,j) 6o((Lk/Lth) -

+ 6o(C22, j - cl2,j) 6o(D22,j - Sk)

+ _o(C22,j - cl2,j) 6o(D12, j - Sk)

+ _o(C23,j - cl3,j) 6o(D13,j - Sk)

+ _o(C23,j - cl3,j) 6o(D23, j - Sk)

+ 6o(C24, j - cl4,j) 6o((Lk/Lth) -

+ _o(C24,j - cl4,j) 6o((Lk/Lth) -

D21,j) [F3k - F21,J4k]

DII,j) [Fll,j,k - F_k ]

[F4k - F22,j_k ]

[Fl2,j, k - F4k]

[F4k - Fl3,j,k ]

[F23,j,k - F4k ]

DI4,j) [F3k - El 4 • ]

(3].)

where Sk=S(Lk) and is evaluated from (7) with the result

S k = sqrt*(l - 4R 2 Lk2/(T 2 Lth2)) (32)

and Fli,j,k=Fli,j(Lk), F2i,j,k=F2i,j(Lk), F3k=F3(Lk ), F4k:F4(Lk )

and can be evaluated from (26) and (23) with the result

Fli,j,k : 2R 2 (Dli,j) 2 + R T Dli,j (1 - (Dli,j)2) I/2

+ R T arcsin(Dli,j) + (4/3)R T (Lth/Lk) (I - (Dli,j)2) 3/2

for 1 = i, 2 (33a)

F 3 =k 2R2 (Lk/Lth)2 + R T (Lk/Lth) (i - (Lk/Lth) 2) I/2

+ R T arcsin(Lk/Lth)+ (4/3)R T (Lth/Lk) (i - (Lk/Lth) 2) 3/2

if Lk S Lth

F3k = 0 if L k > Lth

F 4 =k 2R2 (Sk) 2 + R T S k (i - (Sk) 2)i/2 + R T arcsin(Sk)

+ (4/3)R T (Lth/Lk) (I- (Sk) 2)3/2

(33b)

(33c)
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6. PROGRAM NIFUR

The analysis in the last section is performed by the computer

code NIFUR (NonIsotropic flux Upset Rate) and the FORTRAN source

code is listed in Appendix A.

Special compiling considerations may apply if the code is

modified by changing the DIMENSION statements. This discussion

uses terminology applicable to IBM PCs using the Microsoft FOR-

TRAN Compiler with the large memory model. There is a potential

problem (if modifications are made) due to the large memory

reserved for the arrays. The arrays will not all fit in the

default data segment and must be placed elsewhere. As the code is

written, this placement is automatic because the largest arrays

exceed 64K and the default procedure is to give them huge ad-

dresses and place them outside the default data segment. The

second largest arrays exceed the default data threshold (32K) and

are automatically placed outside the default data segment. The

remaining arrays fit in the default data segment. The problem

occurs if the array sizes are reduced (by editing the DIMENSION

statements) in such a way that the placement is not automatic but

still required because the arrays total to more than 64K. In this

case, we must request the placement when the code is compiled.

This is done using the Gt option (applicable to the Microsoft

compiler). Specifically, the code is compiled with the command

"FL/Gt NIFUR.FOR" (the Gt option is not needed if the code is not

modified). If a different compiler is used, it is up to the user

to determine the equivalent option applicable to that compiler

(if such an option is needed). The compiled code should be tested

against the example in Section i0 to verify that it is working

properly.

The code requires input files which are created the following

way. The 8 interval [0,_) is divided up into user selected subin-

tervals and the directional flux is treated as constant (in the e

coordinate) on each subinterval. The user supplies a separate
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table for each 8 interval, which tabulates flux against LET (the

smallest LET value used in the flux tabulation must be greater

than zero). An input file HFLUX00.DAT must be created, which
identifies the 8 intervals and LET values to be used in the flux

tables. Another input file, HFLUX01.DAT, must be created, which
lists the flux as a function of LET for the first 8 interval (LET

values are not listed in this fi{e because they are in

HFLUX00.DAT). Similarly, HFLUX02.DAT contains the flux for the

second 8 interval, etc. The flux is required to be a directional

(corresponding to the appropriate 8 interval) integral in LET

flux which is averaged in the _ coordinate. The input file for-
mats are described in detail in the source code comment state-

ments. If there is confusion, the example in Section i0 might

help. Device data (A, T, and Lth ) are entered via prompts and the
code output (the upper bound SEU rate estimate) is displayed on
the terminal.

In the special case of an isotropic flux, SEU rates for box-

shaped, charge-collecting volumes can be calculated from the

chord length distribution function for a box [3], and it is

interesting to compare this exact calculation to NIFUR results.

Suppose an area A is used in the NIFUR calculation while the

exact chord length distribution calculation is performed for a

box with both lateral dimensions equal to AI/2 (Lth and T are the

same for both calculations). If T is sufficiently small, the

NIFUR calculated SEU rate will be about 4/_ or about 1.27 times

the chord length distribution calculated rate. The reason is

that, for small T, the rate is proportional to A. Although NIFUR

is given the area A, which is assigned to a circular-cylindrical
volume, the area it actually calculates with is the normal inci-

dent area of the rotating box, which is 4A/_. Hence, the two

calculations disagree by a factor of 1.27 (if T is not small, the
exact relation between the two calculations is not simple, al-

though they are roughly equal). If desired, the NIFUR results can

be modified by dividing by 1.27. If this is done, we cannot

rigorously conclude (from the analysis given here) that the
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modified rate is an upper bound estimate, but it is "probably" an

upper bound (at least it is nearly equal to an upper bound) and
it will conform better (for small T) to more exact calculations.

7. EFFECTIVE FLUX

In this section, we confine our attention to hypothetical or

real devices with the property that the normal incident cross

section versus LET curve can be approximated by a step function.

The normal incident behavior of such devices is characterized by

two parameters; a threshold LET, Lth , and a cross sectional area,

A. The "maximized rate" in a given three dimensional environment

is defined as the rate predicted by NIFUR with thickness, T,

chosen to maximize the rate. If a device contains a single circu-

lar-cylindrical, charge-collecting volume, it is evident that the

maximized rate is an upper bound for the actual SEU rate because

it was constructed to be such.

It is, perhaps, less obvious that the maximized rate (calculat-

ed from Lth and A) is also an upper bound for the SEU rate of a

device containing any number of identical or nonidentical circu-

lar-cylindrical, charge-collecting volumes, all having the same

Lth and with normal incident areas totaling to A. This is true

for the following reason. Suppose a device contains a collection

of such volumes, and the thickness of each volume is selected to

produce a maximum rate for that volume. The sum of the rates for

each volume is an upper bound for the device SEU rate. It can be

shown that this choice of thicknesses will result in all volumes

being geometrically similar. But for geometrically similar vol-

umes with the same threshold LET, the rates predicted by NIFUR

are proportional to the normal incident areas, and the sum of the

rates (an upper bound for the device rate) is the same as the
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rate for a single volume of normal incident area A1 (which is the

maximized rate). Hence, the maximized rate is an upper bound

whether the device contains one, or many, identical or nonidenti-

cal circular-cylindrical volumes all having the same threshold
LET.

From the above discussion, it is reasonable to expect that the

maximized rate, for a given A and Lth, is an upper bound for the

SEU rate of any device having the same A and Lth. The maximized
rate is proportional to A and a normalized rate can be obtained

by dividing the maximized rate by A. This normalized rate, which

depends (for a fixed environment) only on Lth , will be called the

"effective flux" evaluated at LET=Lth. The effective flux evalu-

ated at LET=Lth and multiplied by A is an upper bound for the SEU

rate for any device with threshold LET Lth and cross section A.

In summary:

i. Effective flux evaluated at a given LET is constructed by

running NIFUR with Lth equal to the given LET value and
selecting an arbitrary A. T is varied to produce a maximum
rate and the effective flux is this maximum rate divided by

A.

2. If a tabulation of effective flux versus LET is avail-

able, an upper bound SEU rate estimate for a device with

threshold LET Lth and cross section A can be obtained by

evaluating the effective flux at LET=Lth and multiplying it
by A.

l. For example, 108 cylinders with radius and thickness equal to 1
_m produce the same SEU rate as one cylinder with radius and
thickness equal to 1 cm. The fact that the one large cylinder is

nonphysical (the dimensions are much larger than those of any

physical structures) is irrelevant.
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8. PROGRAM EFFLUX

Upper bound SEU rate estimates are trivial if a tabulation of

effective flux is available. The only calculation that requires

any work is the construction of the effective flux which is done

by the EFFLUX code.

The FORTRAN source code is listed in Appendix B. The same

compiling considerations applicable to NIFUR apply to this code

(see Section 6) and the compiled code should be tested against

the example in Section i0 to verify that it is working properly.

This program is the same as NIFUR except that the user does not

specify values for Lth , A, or T. Values are automatically as-

signed as discussed in the last section. The input files are the

same as those used by NIFUR and the output is an effective flux

tabulation which will be in the file EFFLUX.OUT.

EFFLUX tabulates effective flux against the same LET values

that the original, user specified, flux was tabulated against.

However, the effective flux is meaningless (and should not be

used for SEU rate calculations) at the smallest LET values. The

reason is that a device with threshold LET equal to the smallest

tabulated LET value can be upset from particles with a smaller

LET, and such particles are not included in the original flux

table (their LETs are below the tabulated range). The effective

flux is not meaningful unless it is evaluated at a LET that is

one or more orders of magnitude greater than the smallest LET in

the user supplied flux tabulation. If a device has a small

threshold LET, so that the effective flux must be evaluated at a

small LET, the user supplied flux tabulation must extend to very

small LET values.

As discussed in Section 6, it might be desirable to modify the

effective flux by dividing it by 1.27. It was not rigorously

shown that rate estimates obtained from such a modified flux are
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upper bounds for actual rates, but this is a minor modification

(compared to other sources of error) and will produce better

conformity with other rate calculation methods.

9. DEVICES WITH SMOOTH CROSS SECTION VERSUS LET CURVES

Until now it was assumed that a normal incident device cross

section versus LET curve is a step function. Effective flux can

also be used to calculate upper bound SEU rates for smooth cross

section curves. For a smooth curve, the device is modeled as

consisting of a collection of charge-collecting volumes which do

not have the same threshold LET.

Suppose two devices each contain a collection of circular-

cylindrical, charge-collecting volumes and, at every LET, the

normal incident device cross section (sum of the step functions

associated with individual volumes) of the first device is great-

er than or equal to that of the second device. There need not be

any relationship between the volumes in the two devices, other

than the condition that one cross section curve bounds the other.

It can be shown that the upper bound SEU rate for the first

device (obtain by using the method of Section 7 for each charge-

collecting volume and adding rates) is also an upper bound for

the second device I. This implies that if we are given a cross

section curve for a device containing an unknown collection of

charge-collecting volumes, an upper bound rate estimate can be

obtained by calculating the upper bound rate for any convenient

hypothetical device having a cross section curve that bounds the

given curve. In particular, if we are given a smooth curve, such

as the one in Figure 5, we can construct a staircase curve which

l. This intuitively obvious statement can be proven rigorously,

but the proof is too long to include here.
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Figure 5. An experimental device cross section versus LET curve

and a staircase curve that bounds it.
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bounds the given curve, but is otherwise arbitrary. The staircase

curve represents a hypothetical device which contains one charge-

collecting volume for each step in the staircase. The normal

incident area of a given volume is the height of the step associ-

ated with that volume and the threshold LET of the volume is the

LET coordinate of the step (see Figure 5). After finding the area

and threshold LET of each volume, an upper bound rate is obtained

for each volume using the method of Section 7 and the rates are

added to produce an upper bound estimate for the actual device.

An example is given in the next section to illustrate this algo-

rithm.

It is significant that the steps in the staircase curve do not

have to correspond to physical structures of the actual device.

Any staircase function that bounds the cross section curve can be

used, but the lowest (most accurate) upper bound estimates are

produced by the curves that conform most closely to the actual

curve.

As an incidental point, the above algorithm has the mathemati-

cal interpretation of a numerical integration. The algorithm

produces an upper bound for the integral

I EF(L) dX(L)

where EF(L) is the effective flux evaluated at LET=L and X(L) is

the normal incident device cross section evaluated at LET=L. The

limiting case of an infinitely fine division (the staircase curve

has an infinite number of steps and conforms to the actual curve)

produces the integral exactly. It is not necessary to be aware of

this in order to perform the calculations, but this information

is helpful when looking for similarities between the SEU rate

prediction method discussed here and other methods reported in

the literature.
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i0. AN EXAMPLE

The example below estimates the SEU rate for a hypothetical

device in a hypothetical spacecraft exposed to a hypothetical

solar flare.

The mass distribution, relative to the device orientation, in

this hypothetical spacecraft requires that a different shield

thickness be used to calculate the flux for each of the angular

regions shown below:

Reglon i:

Reglon 2:

Reglon 3:

Reglon 4:

Reglon 5:

Reglon 6:

Reglon 7:

Reglon 8:

Reglon 9:

Reglon i0:

0 < B < 45 ° ,

45 ° < 8 < 75 ° ,

45 ° < 8 < 75 ° ,

45 ° < 8 < 75 °,

45 ° < e < 75 °,

75 ° < 8 < 90 ° ,

75 ° < 8 < 90 ° ,

75 ° < 8 < 90 ° ,

75 ° < O < 90 ° ,

90 ° < O < 180 ° ,

0 < _ < 360 °

< 45 ° or # > 315 °

45 ° < _ < 135 °

135 ° < _ < 225 °

225 ° < _ < 315 °

45 ° < _ < 135 °

< 45 ° or _ > 315 °

225 ° < _ < 315 °

135 ° < _ < 225 °

0 < _ < 360 °

where O is measured from the device normal and # is measured from

some line lying in the device plane.

The Heinrich flux behind the shield thicknesses associated with

each angular region is calculated by a computer code such as

CREME [i]. A particular code, using a particular (and severe)

solar flare model and particular shield thicknesses produced the

flux tables shown in Table 1 I.

l. This calculation is not discussed in detail here because the

user must use his own resources (e.g., CREME [i]) to obtain these

flux tables. The present discussion is concerned with what to do

with the tables, not how to get them.
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REGION 1 REGION 2 REGION 3 REGION 4 REGION 5
LET FLUX FLUX FLUX FLUX FLUX

.1000E+0 .237E+6 .134E+6 .182E+7 .325E+6 .224E+6

.1259E+0 .161E+6 .969E+5 .I17E+7 .218E+6 .153E+6

.1585E+0 .I13E+6 .708E+5 .757E+6 .147E+6 .I06E+6

.1995E+0 .790E+5 .525E+5 .472E+6 .100E+6 .750E+5

.2512E+0 .567E+5 .396E+5 .303E+6 .703E+5 .544E+5

.3162E+0 .418E+5 .300E+5 .206E+6 .511E+5 .403E+5

.3981E+0 .299E+5 .222E+5 .132E+6 .357E+5 .290E+5

.5012E+0 .217E+5 .169E+5 .813E+5 .253E+5 .212E+5

.6310E+0 .180E+5 .142E+5 .640E+5 .207E+5 .177E+5

.7943E+0 .152E+5 .120E+5 .497E+5 .172E+5 .149E+5

.1000E+I .135E+5 .I08E+5 .403E+5 .150E+5 .132E+5

.1259E+I .964E+4 .755E+4 .286E+5 .I08E+5 .951E+4

.1585E+I .660E+4 .511E+4 .203E+5 .741E+4 .650E+4

.1995E+I .399E+4 .303E+4 .136E+5 .449E+4 .392E+4

.2512E+I .256E+4 .192E+4 .974E+4 .291E+4 .251E+4

.3162E+I .179E+4 .131E+4 .726E+4 .204E+4 .175E+4

.3981E+I .908E+3 .638E+3 .472E+4 .101E+4 .898E+3

.5012E+I .663E+3 .464E+3 .354E+4 .727E+3 .654E+3

.6310E+I .351E+3 .245E+3 .216E+4 .385E+3 .346E+3

.7943E+I .203E+3 .142E+3 .130E+4 .222E+3 .202E+3

.IO00E+2 .121E+3 .850E+2 .798E+3 .132E+3 .121E+3

.1259E+2 .807E+2 .571E+2 .529E+3 .880E+2 .806E+2

.1585E+2 .218E+2 .156E+2 .145E+3 .238E+2 .217E+2

.1995E+2 .IIOE+2 .787E+I .726E+2 .120E+2 .IIOE+2

.2512E+2 .380E+I .270E+I .248E+2 .414E+I .379E+I

.3162E+2 .895E-I .559E-I .354E+0 .106E+O .882E-I

.3981E+2 .323E-I .188E-I .I07E+O .395E-I .316E-I

.5012E+2 .159E-I .892E-2 .516E-I .197E-I .153E-I

.6310E+2 .642E-2 .352E-2 .208E-I .799E-2 .625E-2

.7943E+2 .240E-2 .129E-2 .771E-2 .299E-2 .237E-2

.1000E+3 .829E-4 .425E-4 .285E-3 .980E-4 .819E-4

Table i. Integral directional Heinrich flux versus LET for each

angular region. LET in units of MeV-cm2/mg and flux in units of
particles/m -sec-sr.
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LE__TT
REGION 6 REGION 7 REGION

FLUX FLUX FLUX

REGION 9

FLUX

REGION10

FLUX

.IO00E+0 .182E+7 .372E+6 .978E+6 .I02E+6 .362E+6

.1259E+0 .I17E+7 .244E+6 .620E+6 .763E+5 .237E+6

.1585E+0 .757E+6 .164E+6 .400E+6 .572E+5 .160E+6

.1995E+0 .472E+6 .1lIE+6 .257E+6 .434E+5 .I09E+6

.2512E+0 .303E+6 .775E+5 .169E+6 .333E+5 .761E+5

.3162E+0 .206E+6 .561E+5 .I17E+6 .255E+5 .549E+5

.3981E+0 .132E+6 .391E+5 .775E+5 .190E+5 .381E+5

.5012E+0 .813E+5 .276E+5 .500E+5 .145E+5 .268E+5

.6310E+0 .640E+5 .225E+5 .399E+5 .122E+5 .218E+5

.7943E+0 .497E+5 .186E+5 .315E+5 .I04E+5 .181E+5

.1000E+I .403E+5 .162E+5 .261E+5 .931E+4 .157E+5

.1259E+I .286E+5 .I17E+5 .186E+5 .645E+4 .I13E+5

.1585E+I .203E+5 .802E+4 .130E+5 .431E+4 .777E+4

.1995E+I .136E+5 .487E+4 .828E+4 .254E+4 .472E+4

.2512E+I .974E+4 .318E+4 .563E+4 .160E+4 .308E+4

.3162E+I .726E+4 .219E+4 .399E+4 .I09E+4 .213E+4

.3981E+I .472E+4 .I08E+4 .228E+4 .542E+3 .I05E+4

.5012E+I .354E+4 .778E+3 .164E+4 .400E+3 .759E+3

.6310E+I .216E+4 .413E+3 .962E+3 .214E+3 .402E+3

.7943E+I .130E+4 .236E+3 .579E+3 .124E+3 .231E+3

.IO00E+2 .798E+3 .141E+3 .351E+3 .737E+2 .137E+3

.1259E+2 .529E+3 .932E+2 .238E+3 .492E+2 .908E+2

.1585E+2 .145E+3 .252E+2 .635E+2 .132E+2 .246E+2

.1995E+2 .726E+2 .127E+2 .319E+2 .667E+I .124E+2

.2512E+2 .248E+2 .438E+I .I09E+2 .228E+I .427E+I

.3162E+2 .354E+0 .II8E+0 .191E+0 .401E-I .II4E+O

.3981E+2 .107E+0 .446E-I .721E-I .130E-I .429E-I

.5012E+2 .516E-I .220E-I .353E-I .622E-2 .209E-I

.6310E+2 .208E-I .897E-2 .144E-I .249E-2 .862E-2

.7943E+2 .771E-2 .341E-2 .540E-2 .915E-3 .329E-2

.IO00E+3 .285E-3 .123E-3 .199E-3 .301E-4 .I17E-3

Table i. (continued)
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For each 8 interval, the fluxes must be averaged in _. For each

8 interval, each _ interval is the same size so a _ average is a

simple numerical average (if the _ intervals were not the same

size, the fluxes would be weighted according to the sizes of the

intervals in the obvious way). The Region 1 flux is the

average flux for the 8 interval (0,45 ° ) and the Region i0 flux is

the _ average flux for the 8 interval (90°,180°). The fluxes for

Regions 2,3,4, and 5 are averaged to produce the _ average flux

for the 8 interval (45o,75 ° ) and the fluxes for Regions 6,7,8,

and 9 are averaged to produce the _ average flux for the G inter-

val (75°,90°). This averaging is a lot of work if done by hand

(especially if the _ intervals are not uniform and a weighted

average is required) and the user will probably want to write a

code that will speed this up. The averaged fluxes for our example

are shown in Table 2. This table is used to produce the input

files used by EFFLUX as described in the code comment statements.

The input files are shown in Table 3.

Before proceeding, this is a good time to test NIFUR. If NIFUR

is run with the Table 3 files together with A=10 -6, Lth=5 , and

T=I0 -4 it should respond with RATE= 282754f " •

The next step is to run EFFLUX. The output of EFFLUX is the

effective flux and is shown in Table 4. Because the smallest LET

in the original flux tabulation is 0.i MeV-cm2/mg, the effective

flux tabulation should not be trusted for LET less than 1

MeV-cm2/mg (see Section 8). Discarding the lower LET entries and

dividing the flux by 1.27 (as suggested in Section 8) produces

the final effective flux table which is shown in Table 5.

Now that the effective flux has been calculated, the next step

is to estimate the SEU rate. In this example, the device is

represented by the following cross section data:
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0<8<45 ° 45o<8<75 ° 75°<8<90 ° 90°<8<180 o

LET FLUX FLUX FLUX FLUX

.1000E+0 .237E+6 .626E+6 .818E+6 .362E+6

.1259E+0 .161E+6 .409E+6 .528E+6 .237E+6

.1585E+0 .I13E+6 .270E+6 .345E+6 .160E+6

.1995E+0 .790E+5 .175E+6 .221E+6 .I09E+6

.2512E+0 .567E+5 .I17E+6 .146E+6 .761E+5

.3162E+0 .418E+5 .819E+5 .101E+6 .549E+5

.3981E+0 .299E+5 .547E+5 .669E+5 .381E+5

.5012E+0 .217E+5 .362E+5 .434E+5 .268E+5

.6310E+0 .180E+5 .292E+5 .347E+5 .218E+5

.7943E+0 .152E+5 .235E+5 .276E+5 .181E+5

.1000E+I .135E+5 .198E+5 .230E+5 .157E+5

.1259E+I .964E+4 .141E+5 .163E+5 .I13E+5

.1585E+I .660E+4 .983E+4 .I14E+5 .777E+4

.1995E+I .399E+4 .626E+4 .732E+4 .472E+4

.2512E+I .256E+4 .427E+4 .504E+4 .308E+4

.3162E+I .179E+4 .309E+4 .363E+4 .213E+4

.3981E+I .908E+3 .182E+4 .216E+4 .I05E+4

.5012E+I .663E+3 .135E+4 .159E+4 .759E+3

.6310E+I .351E+3 .784E+3 .937E+3 .402E+3

.7943E+I .203E+3 .467E+3 .560E+3 .231E+3

.1000E+2 .121E+3 .284E+3 .341E+3 .137E+3

.1259E+2 .807E+2 .189E+3 .227E+3 .908E+2

.1585E+2 .218E+2 .515E+2 .617E+2 .246E+2

.1995E+2 .IIOE+2 .259E+2 .310E+2 .124E+2

.2512E+2 .380E+I .886E+I .I06E+2 .427E+I

.3162E+2 .895E-I .151E+0 .176E+0 .II4E+0

.3981E+2 .323E-I .492E-I .592E-I .429E-I

.5012E+2 .159E-I .239E-I .288E-I .209E-I

.6310E+2 .642E-2 .964E-2 .II7E-I .862E-2

.7943E+2 .240E-2 .359E-2 .436E-2 .329E-2

.IO00E+3 .829E-4 .127E-3 .159E-3 .I17E-3

Table 2. _ average of the Table 1 fluxes for the four 8 inter-

vals. The units are the same as in Table i.
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HFLUX00.DAT HFLUX01.DAT HFLUX02.DAT HFLUX03.DAT HFLUX04.DAT

4 .237E+06 .626E+06 .818E+06 .362E+06

31 .161E+06 .409E+06 .528E+06 .237E+06

45.0 .I13E+06 .270E+06 .345E+06 .160E+06

75.0 .790E+05 .175E+06 .221E+06 .I09E+06

90.0 .567E+05 .I17E+06 .146E+06 .761E+05

.1000E+00 .418E+05 .819E+05 .I01E+06 .549E+05

.1259E+00 .299E+05 .547E+05 .669E+05 .381E+05

.1585E+00 .217E+05 .362E+05 .434E+05 .268E+05

.1995E+00 .180E+05 .292E+05 .347E+05 .218E+05

.2512E+00 .152E+05 .235E+05 .276E+05 .181E+05

.3162E+00 .135E+05 .198E+05 .230E+05 .157E+05

.3981E+00 .964E+04 .141E+05 .163E+05 .I13E+05

.5012E+00 .660E+04 .983E+04 .I14E+05 .777E+04

.6310E+00 .399E+04 .626E+04 .732E+04 .472E+04

.7943E+00 .256E+04 .427E+04 .504E+04 .308E+04

.1000E+01 .179E+04 .309E+04 .363E+04 .213E+04

.1259E+01 .908E+03 .182E+04 .216E+04 .I05E+04

.1585E+01 .663E+03 .135E+04 .159E+04 .759E+03

.1995E+01 .351E+03 .784E+03 .937E+03 .402E+03

.2512E+01 .203E+03 .467E+03 .560E+03 .231E+03

.3162E+01 .121E+03 .284E+03 .341E+03 .137E+03

.3981E+01 .807E+02 .189E+03 .227E+03 .908E+02

.5012E+01 .218E+02 .515E+02 .617E+02 .246E+02

.6310E+01 .IIOE+02 .259E+02 .310E+02 .124E+02

.7943E+01 .380E+01 .886E+01 .I06E+02 .427E+01

.1000E+02 .895E-01 .151E+O0 .176E+00 .II4E+00

.1259E+02 .323E-01 .492E-01 .592E-01 .429E-01

.1585E+02 .159E-01 .239E-01 .288E-01 .209E-01

.1995E+02 .642E-02 .964E-02 .II7E-01 .862E-02

.2512E+02 .240E-02 .359E-02 .436E-02 .329E-02

.3162E+02 .829E-04 .127E-03 .159E-03 .I17E-03

.3981E+02

.5012E+02

.6310E+02

.7943E+02

.IO00E+03

Table 3. Input files. The file names at the top are not part of
the file contents.
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EFFECTIVE FLUX

LET IN UNITS OF MeV-cm**2/mg
FLUX IN UNITS OF i/(cm**2-day)

LET FLUX

0.1000E+00 0.5248E+08

0.1259E+00 0.4234E+08

0.1585E+00 0.3263E+08

0.1995E+00 0.2487E+08

0.2512E+00 0.1865E+08

0.3162E+00 0.1387E+08

0.3981E+00 0.I024E+08

0.5012E+00 0.7514E+07

0.6310E+00 0.5511E+07

0.7943E+00 0.4078E+07

0.1000E+01 0.3064E+07

0.1259E+01 0.2318E+07

0.1585E+01 0.1735E+07

0.1995E+01 0.1276E+07

0.2512E+01 0.9207E+06

0.3162E+01 0.6598E+06

0.3981E+01 0.4672E+06

0.5012E+01 0.3264E+06

0.6310E+01 0.2271E+06

0.7943E+01 0.1561E+06

0.1000E+02 0.I064E+06

0.1259E+02 0.7171E+05

0.1585E+02 0.4733E+05

0.1995E+02 0.3071E+05

0.2512E+02 0.1969E+05

0.3162E+02 0.1249E+05

0.3981E+02 0.7847E+04

0.5012E+02 0.4902E+04

0.6310E+02 0.3058E+04

0.7943E+02 0.1909E+04

0.1000E+03 0.I188E+04

Table 4. Contents of the file EFFLUX.OUT.
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EFFECTIVE FLUX

LET IN UNITS OF MeV-cm**2/mg
FLUX IN UNITS OF i/(cm**2-day)

LET FLUX

0.1000E+01 0.241E+07

0.1259E+01 0.183E+07

0.1585E+01 0.137E+07

0.1995E+01 0.100E+07

0.2512E+01 0.725E+06

0.3162E+01 0.520E+06

0.3981E+01 0.368E+06

0.5012E+01 0.257E+06

0.6310E+01 0.179E+06

0.7943E+01 0.123E+06

0.1000E+02 0.838E+05

0.1259E+02 0.565E+05

0.1585E+02 0.373E+05

0.1995E+02 0.242E+05

0.2512E+02 0.155E+05

0.3162E+02 0.983E+04

0.3981E+02 0.618E+04

0.5012E+02 0.386E+04

0.6310E+02 0.241E+04

0.7943E+02 0.150E+04

0.1000E+03 0.935E+03

Table 5. The final effective flux table.
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Cross section (cm 2)

Approximately zero

9.2xi0 -4

5.7xi0 -3

1.6x10 -2

LET (MeV-cm2/mg)

3

6

16

4O

A staircase function is constructed to bound the cross section

curve as illustrated in Figure 5. The vertices are arbitrary and

in this example are chosen to correspond to the discrete points

listed above. Each step in the staircase function defines a cross

section and threshold LET for a hypothetical charge-collecting

volume as listed below (note that a given cross section corre-

sponds to a smaller LET than in the original data, e.g., 9.2xi0 -4

corresponds to 3 instead of 6). Also listed are the approximate

effective fluxes evaluated at the LETs. Upset rate estimates are

constructed from this data as shown (the obvious units are im-

plied).

Charge-collecting Cross Threshold Effective

volume # section LET flux

1 9.2xi0 -4 3 5.7xi05

2 5.7x10 -3 6 2.0xl05

-9.2xi0 -4

=4.8x10 -3

3 1.6x10 -2 16 3.7x104

-5.7xi0 -3

=l.0xl0 -2

Upper bound SEU rate =

(9.2xi0-4) (5.7xi05) + (4.8xi0-3) (2.0x105) + (l. Ox10-2) (3.7xi04)

= 1.9xl03/day.
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ii. CONCLUSION

The analysis given here provides a way to standardize SEU rate

calculations for a given space mission. The proposed method is

the following: The flight project is required to estimate the

environments of concern (e.g., typical flux, peak flux, mission

integrated fluence, etc.) with the effects of mass shielding

included. Using the computer code EFFLUX, the flight project

constructs tables of effective flux versus LET. If the environ-

ment must be treated as nonisotropic, different tables are needed

for different device orientations relative to the spacecraft. A

device vendor can then calculate SEU rates by using a simple

numerical integration to combine device cross section data with

the effective flux tables.

The purpose of the effective flux is to simplify SEU rate

calculations from the vendor's point of view. Most of the work

required for SEU rate estimates is performed by the flight

project when constructing effective flux tables. After these

tables have been constructed, SEU rate estimates are simple.
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APPENDIX A

PROGRAMNIFUR
C Copyright (c) 1991, California Institute of Technology.
C U.S. Government Sponsorship under NASA Contract NAS7-918

C is acknowledged.

REAL LTH,L(200)

C_CTER*2,FLNMI

CHARACTER*II,FLNM2

DIMENSION A(31),B(5),CI(4,30),C2(4,30),DI(4,30),D2(4,30)

DIMENSION S(200),HA(30,200)

DIMENSION F3(200),F4(200),FI(4,30,200),F2(4,30,200)

DIMENSION G(30,200)
C Read data. Device data consists of a normal incident cross

C section AC, a threshold LET LTH, and a thickness T, which

C are entered via prompts. The files HFLUX00.DAT, HFLUX01.DAT,

C ..., HFLUX09.DAT, HFLUXI0.DAT, HFLUXII.DAT, ... contain

C environmental data. There is one file (after the "00" file)

C for each angular bin (discussed below). The angular inter-

C val [0,180 degrees) is partitioned into the bins

C [A(1) ,A(2)) , [A(2),A(3)) , ..., [A(N),A(N+I)) where A(1)=0

C and A(N+I)=I80. The discrete values L(1), ...,L(M) of LET

C (in MeV-cm**2/mg) are selected by the user. The file

C HFLUX00.DAT contains the values of N, M, A(2), ..., A(N),

C L(1), ..., L(M) respectively. (Note that the A's are read

C in degrees and then converted into radians. Also note that,

C for an isotropic flux, N=I and no A's are listed in

C HFLUX00.DAT.) The file HFLUX01.DAT contains the values of

C HA(I,1), HA(I,2), ..., HA(I,M) where HA(J,K) is the integral

C (in LET) directional flux ( in i/m**2-sec-sr) evaluated at

C LET=L(K) and in the direction corresponding to the JTH

C angular bin. Etc. for the other files. Note that N must

C not exceed 30 and M must not exceed 200. After reading HA,

C convert to the units i/cm**2-day-sr.

PI=ATAN2(0.0,-I.0)

PI2=ATAN2(I.0,0.0)

WRITE(*,*)'ENTER NORMAL INCIDENT CROSS SECTION (CM**2)'

READ*,AC

R=SQRT(AC/PI)

WRITE(*,*)'ENTER THRESHOLD LET (MEV-CM**2/MG)'

READ*,LTH

WRITE(*,*)'ENTER THICKNESS (CM)'

READ*,T

OPEN(UNIT=8,STATUS='OLD',FILE='HFLUX00.DAT')

REWIND (8)

READ (8, * )N

READ(8,*)M

A(1)=0.0

A (N+I) =PI

IF (N.GE.2) THEN

DO I0 J=2,N

READ (8, *) A(J)

A(J) =A(J) *PI/180.0
i0 CONTINUE

END IF
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C

C

C

C

C

2O

DO 20 J=I,M

READ (8, *) L(J)

CONTINUE

CLOSE (8 )

DO 40 J=I,N

JCI=MOD (J, i0)

JC2= (J-JCI)/i0

FLNMI=CHAR(JC2+48)//CHAR(JCI+48)

FLNM2='HFLUX'//FLNMI//'.DAT'

OPEN(UNIT=8,STATUS='OLD',FILE=FLNM2)

REWIND(8)

DO 30 K=I,M

READ(8,*) HA(J,K)

HA(J,K)=8.64*HA(J,K)

30 CONTINUE

CLOSE(8)

40 CONTINUE

Construct the B's using (13), the C's using

and the D's using (22).

B(1)=0.0

B (2) =ATAN (2.0*R/T)

B(3)=PI2

B (4) =PI-ATAN (2.0*R/T)

B(5) =PI

DO 60 I=i,4

DO 50 J=I,N

CI(I,J)=AMAXI(A(J) ,B(I))

C2 (I, J) =AMINI (A(J+I) ,B (I+l))

50 CONTINUE

60 CONTINUE

DO 70 J=I,N

ml (I, J) =COS (CI (I, J) )

D1 (2, J) =COS (Cl(2,J))

D1 (3,J) =COS (PI-CI (3,J))

DI(4 ,J) =COS (PI-CI (4,J))

D2 (i, J) =COS (C2 (l,J))

D2 (2 ,J)=COS(C2 (2,J))

D2 (3, J) =COS (PI-C2 (3,J))

D2 (4 ,J) =COS (PI-C2 (4,J))

70 CONTINUE

Construct S(K) using (32)

hold intermediate results

calculations.

DO 80 K=I,M

W=2. O*R*L(K) / (T*LTH)

W=I. 0-W*W

S (K) =0.0

IF (W.GT.0.0) S(K)=SQRT(W)

F3 (K) =0.0

IF (L(K).LE.LTH) THEN

W=L (K)/LTH

WI=2.0*R*R*W*W

W2=R*T*W*SQRT (i. 0-W,W)

W3=R*T*ASIN (W)

and the F's using
and are reused in

(16),

(33). The W's
different

W4= (4.0/3.0) *R,T* (LTH/L (K)) * (i. 0-W,W) **i. 5
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80

90
i00
ii0

C Now
C intermediate results.

DO 130 J=I,N

DO 120 K=I,M

W=L (K)/LTH

U=S(K)
WI=0.0

F3 (K)=WI+W2+W3+W4

END I F

W=S (K)
WI=2.0*R*R*W*W

W2=R*T*W*SQRT (I. 0-W'W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R'T* (LTH/L (K)) * (i. 0-W'W) **i. 5

F4 (K)=WI+W2+W3+W4

CONTINUE

DO ii0 I=i,4

DO I00 J=I,N

DO 90 K=I,M

W=DI (I,J)

WI=2.0*R*R*W*W

W2=R*T*W*SQRT (i. 0-W'W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R'T* (LTH/L (K)) * (i. 0-W'W) **i. 5

F1 (I, J, K) =WI+W2+W3+W4

W=D2 (I,J)

WI=2.0*R*R*W*W

W2=R*T*W*SQRT (I. 0-W'W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R'T* (LTH/L(K)) * (i. 0-W'W) **i. 5

F2 (I, J, K) =WI+W2+W3+W4
CONTINUE

CONTINUE

CONTINUE

calculate G(J,K) using (31). The W's hold

120

130

C

IF ((C2(I,J) .GT.CI(I,J)).AND. (W.GT.D2(I,J)))

W2=0.0

IF ((C2(I,J).GT.CI(I,J)) .AND. (W.GT.DI(I,J)))

W3=0.0

IF ((C2(2,J).GT.CI(2,J)).AND. (D2(2,J) .GT.U))

W4=0.0

IF ((C2(2,J).GT.CI(2,J)).AND. (DI(2,J).GT.U))

W5=0.0

IF ((C2(3,J).GT.CI(3,J)).AND. (DI(3,J).GT.U))

W6=0.0

IF ((C2(3,J) .GT.CI(3,J)) .AND. (D2(3,J).GT.U))

W7=0.0

IF ((C2(4,J) .GT.CI(4,J)).AND. (W.GT.DI(4,J)))

W8=0.0

IF ((C2(4,J).GT.CI(4,J)).AND. (W.GT.D2(4,J)))

G(J,K)=WI+W2+W3+W4+W5+W6+W7+W8

CONTINUE

CONTINUE

Calculate the sum in (29) and print the result.

RATE=0.0

DO 150 J=I,N

WI=F3 (K) -F2 (i, J,K)

W2=FI (i, J,K) -F3 (K)

W3=F4 (K) -F2 (2, J,K)

W4=FI (2,J,K) -F4 (K)

W5=F4 (K)-FI (3, J,K)

W6=F2 (3,J,K) -F4 (K)

W7=F3 (K) -FI (4, J,K)

W8=F2 (4, J,K) -F3 (K)
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140
150

DO 140 K=I,M-I
RATE=RATE+(G(J,K+I) +S(J, K) ) * (HA(J,K) -HA(J, K+l) )
CONTINUE

CONTINUE

RATE=PI*RATE

WRITE(*,*) 'LTH =',LTH

WRITE(*,*) 'T =',T

WRITE(*,*) 'AC =',AC

WRITE(*,*) 'RATE =',RATE,' UPSETS/DAY'
END
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APPENDIX B

PROGRAMEFFLUX
C Copyright (c) 1991, California Institute of Technology.

C U.S. Government Sponsorship under NASA Contract NAS7-918

C is acknowledged.

C

C This program is the same as NIFUR except that threshold

C LET (LTH), normal incident cross section (AC), and

C thickness (T) are not assigned by the user. AC is set

C equal to 1 cm**2 and LTH is assigned in a loop so that it

C is given each of the LET values that the flux is tabulated

C against. For each LTH, T is varied for a maximum upset rate.
C A tabulation of maximum rate versus LTH is the effective

C flux and is stored in the file EFFLUX.OUT.

REAL LTH,L(200)

CHARACTER*2,FLNMI

CHARACTER*II,FLNM2

DIMENSION A(31),B(5),CI(4,30),C2(4,30),DI(4,30),D2(4,30)

DIMENSION S(200) ,RAT(200),TT(200) ,HA(30,200)

DIMENSION F3(200) ,F4(200),FI(4,30,200) ,F2(4,30,200)

DIMENSION G(30,200)

C Read data. The files HFLUX00.DAT, HFLUX01.DAT, ...,

C HFLUX09.DAT, HFLUXI0.DAT, HFLUXlI.DAT, ... contain

C environmental data. There is one file (after the "00" file)

C for each angular bin (discussed below). The angular inter-

C val [0,180 degrees) is partitioned into the bins

C [A(1) ,A(2)), [A(2),A(3)), ..., [A(N),A(N+I)) where A(1)=0

C and A(N+I)=I80. The discrete values L(1), ...,L(M) of LET

C (in MeV-cm**2/mg) are selected by the user. The file

C HFLUX00.DAT contains the values of N, M, A(2), ..., A(N),

C L(1), ..., L(M) respectively. (Note that the A's are read

C in degrees and then converted into radians. Also note that,

C for an isotropic flux, N=I and no A's are listed in

C HFLUX00.DAT.) The file HFLUX01.DAT contains the values of

C HA(I,1), HA(I,2), ..., HA(I,M) where HA(J,K) is the integral

C (in LET) directional flux ( in i/m**2-sec-sr) evaluated at

C LET=L(K) and in the direction corresponding to the JTH

C angular bin. Etc. for the other files. Note that N must

C not exceed 30 and M must not exceed 200. After reading HA,

C convert to the units I/cm**2-day-sr.

PI=ATAN2 (0.0,-i. 0)

PI2=ATAN2(I.0,0.0)

AC=I.0

R=SQRT (AC/PI )

OPEN(UNIT=8,STATUS='OLD',FILE='HFLUX00.DAT')

REWIND(8)

READ(8,*) N

READ (8, *) M

a(1)=0.0

a (N+I) =PI

IF (N.GE.2) THEN

DO i0 J=2,N

READ (8, *) A(J)

A (J) =A(J) *PI/180.0
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I0 CONTINUE
END IF
DO 20 J=I,M
READ(8, *) L(J)

20 CONTINUE
CLOSE(8)
DO 40 J=I,N
JCI=MOD(J, I0 )
JC2= (J-JCI)/I0
FLNMI=CHAR(JC2+48) //CHAR (JCI+48)

FLNM2= 'HFLUX '//FLNMI //'. DAT'

OPEN (UNIT=8, STATUS= 'OLD ' ,FILE=FLNM2 )

REWIND (8 )

DO 30 K=I,M

READ (8, *) HA (J,K)

HA (J, K) =8.64*HA(J, K)

30 CONTINUE

CLOSE (8 )

40 CONTINUE

C Start an outer loop in Jl that assigns values to LTH.

C An inner loop in J2 assigns values to T and calulates the

C upset rate. The maximum rate calculated in the inner loop

C is stored in RAT(J1) and the value of T producing this

C rate is stored in TT(JI).

DO 210 JI=I,M

LTH=L (J 1 )

TT(JI)=O.0

RAT (Jl) =0.0

DO 200 J2=i,21

T=I0.0"* ( (FLOAT (J2) -21.0)/i0.0)

C Now the upset rate calculation starts.

C Construct the B's using (13), the C's using (16),

C and the D's using (22).

B(1)=0.0
B (2) =ATAN (2.0*R/T)

B(3) =PI2

S (4) =PI-ATAN (2.0*R/T)

B(5)=PI

DO 60 I=l, 4

DO 50 J=I,N

C1 (I,J) =AMAXI (A(J) ,B(I) )

C2 (I, J) =AMINI (A(J+I) ,B (I+l))

50 CONTINUE

60 CONTINUE

DO 70 J=I,N

D1 (i, J) =COS (CI (i, J) )

D1 (2, J) =COS (CI (2, J) )

D1 (3, J) =COS (PI-CI (3, J) )

D1 (4,J) =COS (PI-CI (4, J) )

D2 (l,J) =COS (C2 (l,J))

D2 (2,J) =COS (C2 (2,J))

D2 (3,J)=COS(PI-C2 (3,J))

D2 (4, J) =COS (PI-C2 (4, J) )
70 CONTINUE

C Construct S(K) using (32) and the F's using (33). The W's
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C hold intermediate results and are reused

C calculations.

DO 80 K=I,M

W=2.0*R*L(K) / (T*LTH)

W=I. 0-W*W

S(K)=0.0

IF (W.GT.0.0) S(K)=SQRT(W)

F3 (K)=0.0

IF (L(K).LE.LTH) THEN

W=L (K)/LTH

WI=2.0*R*R*W*W

W2=R*T*W*SQRT (i. 0-W,W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R,T* (LTH/L(K)) * (i. 0-W,W) **i. 5

F3 (K) =WI+W2+W3+W4

END IF

W=S (K)
WI=2.0*R*R*W*W

W2=R*T*W*SQRT (1.0-W,W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R,T* (LTH/L(K)) * (i. 0-W-W) **I. 5

F4 (K)=WI+W2+W3+W4

80 CONTINUE

DO ii0 I=I,4

DO I00 J=I,N

DO 90 K=I,M

W=DI (I,J)

WI=2.0*R*R*W*W

W2=R*T*W* SQRT (1.0-W,W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R,T* (LTH/L (K)) * (i. 0-W,W) **i. 5

F1 (I, J, K) =WI+W2+W3+W4

W=D2 (I,J)
WI=2.0*R*R*W*W

W2=R*T*W*SQRT (1.0-W,W)

W3=R*T*ASIN (W)

W4= (4.0/3.0) *R,T* (LTH/L (K)) * (i. 0-W,W) *,1.5

F2 (I, J, K) =Wl+W2+W3+W4

90 CONTINUE

i00 CONTINUE

110 CONTINUE

C Now calculate G(J,K) using (31). The W's hold

C intermediate results.

DO 130 J=I,N

DO 120 K=I,M

W=L (K)/LTH

U=S (K)

WI=0.0

IF ((C2(I,J).GT.CI(I,J)).AND. (W.GT.D2(I,J)))

W2=0.0

IF ((C2(I,J) .GT.CI(I,J)).AND. (W.GT.DI(I,J)))

W3=0.0

IF ((C2(2,J) .GT.CI(2,J)).AND. (D2(2,J) .GT.U))

W4=0.0

IF ((C2(2,J) .GT.CI(2,J)) .AND. (DI(2,J) .GT.U))

in different

WI=F3 (K) -F2 (i, J,K)

W2=FI (i, J,K)-F3 (K)

W3=F4 (K) -F2 (2,J,K)

W4=FI (2, J,K) -F4 (K)
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C
C

W5=0.0
IF ((C2(3,J) .GT.CI(3,J)) .AND. (DI(3,J) .GT.U))
W6=0.0
IF ((C2(3,J) .GT.CI(3,J)) .AND. (D2(3,J) .GT.U))
W7=0.0
IF ((C2(4,J) .GT.CI(4,J)).AND. (W.GT.DI(4,J)))
W8=0.0
IF ((C2(4,J) .GT.CI(4,J)).AND. (W.GT.D2(4,J)))
G(J, K) =WI+W2+W3+W4+W5+W6+W7+W8

120 CONTINUE
130 CONTINUE

C Calculate the upset rate using (29).
RATE=O. 0

DO 150 J=I,N

DO 140 K=I,M-I

RATE=RATE+ (G (J,K+l) +S (J, K) ) * (HA(J, K) -HA(J,K+I) )
140 CONTINUE

150 CONTINUE

RATE=PI*RATE

Store the maximum upset rate and associated value

in RAT(J1) and TT(JI).

IF (RATE.GT.RAT(JI)) THEN

RAT (Jl) =RATE

TT (Jl)=T
END IF

200 CONTINUE

210 CONTINUE

C Record the data.

C interest and can
The values of TT(JI) are

be obtained by inserting
C WRITE statements.

220

230

240

W5=F4 (K) -FI (3, J,K)

W6=F2 (3, J, K) -F4 (K)

W7=F3 (K) -FI (4, J,K)

W8=F2 (4,J,K)-F3 (K)

of T

of academic

additional

OPEN(UNIT=8,STATUS='UNKNOWN',FILE='EFFLUX.OUT,)

REWIND(8)

WRITE(8,*)'EFFECTIVE FLUX'

WRITE(8,*)' '

WRITE(8,*)'LET IN UNITS OF MeV-cm**2/mg'

WRITE(8,*)'FLUX IN UNITS OF I/(cm**2-day)'

WRITE(8,*)' '

WRITE(8,230)'LET','FLUX'

WRITE(8,230)'---,, ,.... ,

DO 220 J=I,M

WRITE(8,240) L(J),RAT(J)
CONTINUE

CLOSE(8)

FORMAT(A28,A20)

FORMAT(E31.4,E20.4)
END
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